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The relation between the concepts of temperature and entropy and the kinetic 
theory of gases is discussed, with particular attention to the aspects which are 
frequently treated as obvious or not even mentioned. In order to show that the 
usual thermodynamic relations are by no means obvious and may be contradic- 
tory, the model of a discrete velocity gas is used. It is also shown that the usual 
relation between the entropy rate and the heat supplied to a gas is not valid 
(even close to equilibrium) unless the theory is Galilei invariant (which is 
obviously not the case for a discrete velocity gas) and must be replaced by 
another one that eliminates all the paradoxical aspects of the matter. 
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1. I N T R O D U C T I O N  

T h e  fact  t ha t  this p a p e r  is m e a n t  to c o n t r i b u t e  to the  c e l e b r a t i o n  o f  

M a t t h i e u  Erns t ' s  60th  b i r t h d a y  g a v e  me  a h in t  to  the  top ic  to choose .  I am,  

in fact, sure  o f  his in teres t  in this topic .  As will  be ind ica t ed  later ,  we even  

c o r r e s p o n d e d  o n c e  on  a p a r t i c u l a r  aspec t  o f  the  p re sen t  paper .  

W h a t  n e w  can  be  said a b o u t  the  subjec t  i nd ica t ed  in the  t i t le? W e  star t  

by reca l l ing  a few w e l l - k n o w n  facts, in o r d e r  to fix the  n o t a t i o n .  

T h e  s econd  law of  t h e r m o d y n a m i c s  s tates ,  as is well  k n o w n ,  tha t  the re  

is a s ta te  func t i on  S, ca l led  e n t r o p y ,  such tha t  (in the  case  o f  a fixed 

a m o u n t  o f  ~as, to  w h i c h  we shall  s t ick here) :  

(a)  In  any  revers ib le  t r a n s f o r m a t i o n  

T , ~ = E +  pl2 (I.I) 
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where the dot denotes a time derivative, E the energy of the system, T the 
absolute temperature, p the pressure, and V the volume occupied by the 
gas. 

(b) In any irreversible transformation 

T,~>~ E + p(" (1.2) 

Perhaps we should add a word of explanation here. If one opens any 
book on thermodynamics, one will find the above relations written in a 
slightly different way, i.e., with the time derivatives S,/~, p I;" replaced by the 
differentials dS, de, dr. The two formulations are, of course, completely 
equivalent, because the first differential of a dependent variable is nothing 
else than the first derivative multiplied by the increment (differential) of the 
independent variable. The latter, in dynamics, is usually time; however, 
time is rarely, if ever, mentioned in thermodynamics, to the point that 
somebody can dub the latter as "thermostatics." The notation with differen- 
tials is very convenient when one wants to study thermodynamics as the 
science dealing with equilibrium states and state functions. A very elegant 
discipline arises, which is more mathematical than physical and can be 
likened to Euclidean geometry for its beauty and self-consistency. In physics, 
however, the states dealt with in this discipline are reached through time 
evolution and so there is a thermodynamics of processes, which requires 
time derivatives. These processes are usually time irreversible and thus a 
special discipline, called thermodynamics of irreversible processes or 
thermomechanics, has grown to describe them. In this case the use of time 
derivatives is imperative. As a matter of fact, even usual books of thermo- 
dynamics, if they write Eq. (1.2) at all in terms of differentials, risk 
confusing the reader, unless they make it clear that time is the independent 
variable. Why should entropy increase in an isolated system if we choose 
another variable, say volume or pressure or, indeed, entropy itself, as an 
independent variable? 

Here we study the connection between kinetic theory and thermo- 
dynamics and thus the use of time derivatives is also essential. Before entering 
this topic, however, we should mention the relation between the two kinds 
of thermodynamics that we have just mentioned. The thermodynamics 
expounded in the books that bear its name in the title (the one dealing 
with state functions) can be recovered from the thermodynamics of processes 
in the limit of very slow processes when inhomomogeneities, higher order 
time derivatives, and squares of time derivatives can be neglected. 

Although temperature is an intuitive concept, known from everyday 
life, and entropy a rather difficult concept, we face the following paradoxi- 
cal situation: entropy (at least for a monatomic perfect gas) is well defined 
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in kinetic theory (as the integral o f f  log f )  for both equilibrium and non- 
equilibrium states, temperature is not. Temperature is only defined for a 
system in equilibrium; this does not prevent us, of course, from extending 
the concept to nonequilibrium states. This can be done by either assuming 
a local equilibrium or, using some basic relation holding in equilibrium, to 
define temperature for nonequilibrium states as well. In fact, temperature in 
kinetic theory usually appears in connection with internal energy per unit 
mass e or pressure p. Here are two typical relations for a monatomic 
perfect gas: 

e = 3RT; p = p R T  (R = k /m)  (1.3) 

Here k is the Boltzmann constant and m the mass of a molecule. This is 
justified by known laws holding in kinetic theory for monatomic perfect 
gases. We remark that e, p, and p can be defined out of equilibrium as well 
through moments of the distribution function. 

However in thermodynamics there is no reason why both relations 
should hold at the same time. The only thing that one can show is that if 
the second relation in (1.3) is assumed to hold, then e must be a function 
of T only, but there is no reason why this relation should be linear. Some- 
times one talks of a thermally perfect gas when the second equation in (1.3) 
holds and of a calorically perfect gas when the first one does. 

If we treat deviations from equilibrium (velocity, heat flow, deviation 
of the stress tensor from isotropic pressure) as of order e (a smallness 
parameter) and neglect terms of order e 2, then we can easily obtain from 
the Boltzmann equation the first principle of thermodynamics, in the form 

/~ = - p  17 + q (1.4) 

where E is the total energy, V the volume, and q the heat flowing into the 
gas per unit time. This is obtained from the energy balance equation with 
due care in evaluating the derivatives when the domain changes in time. 

The concept of temperature is made unique, except for a constant 
factor, by the second principle. Usually the identification of T is made 
trivial in kinetic theory, sometimes reduced to a definition. 

But this definition might be wrong, in the sense that it might con- 
tradict some accepted ideas or relations. To see this we shall consider the 
example of the lattice gas (discrete positions, velocities, and time) or, in 
order to avoid problems related to volume changes, a merely discrete 
velocity gas (with continuous space-time). 

As a matter of fact, my interest in the topic of the present paper was 
spurred by a talk by Ernst, t~ who a few years ago pointed out that "many 
authors have introduced quantities, called "temperatures" of a Cellular 

822/87/5-6-9 



1100 Cercignani 

Automata fluid, that do not coincide with the true temperature in the sense 
of thermodynamics and statistical mechanics." Actually, his criticism 
specifically applies to the kinetic theory of discrete-velocity gases, because 
it is not the discretization of space variables, but the discrete nature of 
velocities that plays a significant role in the circumstance that certain 
thermodynamic relations change when we leave the confortable realm 
provided by the traditional gas with a continuous set of velocitiesJ 2" 3~ As a 
matter of fact, in the same volume of Proceedings where Ernst's paper ~ 
appeared there is another paper, ~4~ where a definition of temperature at 
variance with that supplied by statistical mechanics is used. The authors 
can be perhaps excused because this debatable definition has become tradi- 
tional since the pioneering treatment of Gatignol; 15~ even a more recently 
published book, 16~ however, contains the same arbitrary choice, without 
justifying it. 

As Ernst pointed out, the gas temperature T is something that appears 
in the equilibrium canonical distribution, proportional to exp(-f iE) ,  where 
E is the total energy of the gas; precisely, as equilibrium statistical 
mechanics teaches us, fl = 1/(kT). It is amusing to see that the authors of 
the above-mentioned paper t4~ devote some effort to the problem of relating 
fl and T (defined in a different way); their relation is strongly nonlinear and 
complicated. 

The aim of this paper is thus to discuss the thermodynamics of a gas 
in terms of kinetic theory with particular reference to the concepts of 
temperature and entropy. The case of a discrete velocity gas will show why 
this is necessary. In fact, at first, it would seem that there is no need for 
such an enterprise because everything is solved by the simple remark by 
Ernst. It seems appropriate, however, to discuss this matter from the view- 
point of the kinetic theory of gases, without any reference to general results 
of equilibrium statistical mechanics. This is also convenient from the point 
of view of a gas with a continuous distribution of velocities, because it 
shows what subtleties are hidden under certain statements that are 
frequently introduced in the form of mathematical definitions. 

We shall find, in fact, that some familiar thermodynamic relations 
cannot be applied at all, with the consequence that one should be careful 
before talking about the "thermodynamics of a discrete-velocity gas." 

2. BOLTZMANN EQUATION, STATE VARIABLES, 
AND EQUATIONS OF STATE. 

According to standard definitions, a discrete velocity model of a gas is 
a system of partial differential equations of hyperbolic type (discrete 
Boltzmann equation), having the following form: 
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Of~lOt + v,. Of, lax = Q,( f .  f )  (2.1a) 

Q,( f .  f )  = ~. ciikkif  k - ~ k , f j f ~  (2.1b) 
.L k j 

where vi are the discrete velocities (vectors of R 3) belonging to a 
prearranged discrete set, co. k and ks/are positive constants, and the indices 
run from 1 to p, while Jl- ( i=  1, 2 ..... p) are the probabilities (per unit 
volume) of finding a molecule at time t at position x with velocity vi. We 
shall w r i t e r  as done in (2.1b), for the collection f,.. 

We certainly must assume that the collision term Q;(f, f )  satisfies the 
restrictions needed to guarantee the conservation of mass, momentum, and 
energy and the entropy inequality. We remark that this would be a 
generalization with respect to the traditional concept of a discrete velocity 
gas, 15~ where it is assumed that each single collision satisfies momentum 
and energy conservation. This restriction, dictated by a strict analogy with 
the case of continuously distributed velocities, is rather inconvenient. In 
fact: (a) the traditional models are very restricted in number and frequently 
plagued with accidental degeneracies, such as the presence of more than 
five collision invariants and hence additional conservation laws with 
respect to the traditional ones (mass, momentum, and energy); (b) their 
extension to mixtures seems hard if not impossible, especially when the 
ratio of masses is irrational (in fact I do not know of any discrete-velocity 
model of the traditional kind for mixtures, with the exception of the case 
when all the momenta have the same magnitude and hence conservation of 
energy follows from the conservation of the number of particles); (c) there 
is not a known procedure to approximate in arbitrary fashion the con- 
tinuous case by a sequence of discrete models, at least if we want to satisfy 
all the formal properties of the Boltzmann equation, because (in more than 
two dimensions) the known models satisfying the conservation equations 
and the H-theorem and not degenerate for some reason are finite in 
number. 

However if we only assume that 

Z Q , ( f , f ) ~ , = o  (~=0 ,  1, 2, 3, 4, 5) (2.2) 
/ 

where ~,~ (0c=0, 1, 2, 3, 4, 5) are the five collision invariants (1, ~j, r 
(3, ]v[2), where ~.;= ( j =  1, 2, 3) are the Cartesian components of v, we lose 
several important properties of the Boltzmann equation. The physical inter- 
pretation of these extended discrete-velocity models would be the following. 
A collision is a more complicated process than in the continuous velocity 
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model. When two particles meet they undergo a not completely deter- 
ministic process, in the sense that we cannot guarantee that another pair 
will emerge from the collision with certain velocities but only that the 
precollision momentum and energy will be distributed with a certain prob- 
ability to a number of pairs; this is true even in the continuous Boltzmann 
equation because the collision parameters  also determine the postcolli- 
sional velocities. Here we go a step further because we do not exhibit 
possible pairs of these velocities; thus there are no elementary processes 
where mass, momentum,  and energy are conserved, but we only ensure 
that momentum and energy are conserved globally. 

Unfortunately, if we also assume the validity of an H-theorem, this can 
be shown to require the conservation of momentum and energy in each 
single collision. As a consequence, however, we can also show the existence 
of a "Maxwellian" distribution Jgi such that Q(J / ,  J / )  = 0 and log J / i s  a 
linear combination of the collision invariants. Thus we must stick to tradi- 
tional discrete models. 

The macroscopic quantities are computed, as usual, by taking 
averages, weighted with f,., of the microscopic quantities. Thus the density 
p is obtained from 

p(x, t )=y"  fi(x, v;, t) (2.3) 
i 

A discussion of the momentum balance leads to the result that the pressure 
of the gas should be computed through 

p(x, t) = (1/3) ~ c~fi(x, v,, t) (G=vi--u) (2.4) 
i 

where u is the bulk velocity and the factor 3 arises from the fact that space 
is three-dimensional and we assume that an interchange of the coor- 
dinates leaves the gas equations invariant. Balance of energy indicates that 
the energy per unit mass e should be defined by means of the following 
relation: 

pe(x, t) = (I/2) ~ c~ fi(x, vi, t) (2.5) 
i 

All these definitions are exactly the same as in the case of a gas with con- 
tinuous velocities, the only difference being that sums over a discrete set 
replace integrals. Actually what we shall say applies to continuous 
velocities as well. In this case, as we shall see, both relations in (1.3) will 
turn out to hold by what appears to be a coincidence, but, as we shall see, 
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is subtly related to the Galilei invariance of the Boltzmann equation, 
which, of course, is not available in the case of discrete velocities. 

It is an obvious consequence of Eqs. (3)-(5) that the following equa- 
tion of state holds: 

p = (2/3) pe (2.6) 

This equation relating density, pressure and internal energy holds for any 
dilute "monatomic" gas, i.e. any gas made of molecules, whose internal and 
potential energies are negligible. At this point, it is tempting to introduce 
temperature ~4-61 by means of 

e = (3/2) RT (2.7) 

in order to obtain the usual equation of state p = pRT. This step is purely 
formal and is not related at all to the physical meaning of temperature. 

3. THE USUAL RELATIONS M A Y  PRODUCE 
A CONTRADICTION.  

In order to introduce the concept of temperature, we remark that this 
name is used for a quantity having the property of having the same value 
for two systems of particles which are able to exchange energy and are in an 
equilibrium state. This definition implies that we must define temperature 
for equilibrium states; the extension of this concept to nonequilibrium 
gases can be performed only by assuming that the same relations holding 
among internal energy, pressure, density and temperature in an equilibrium 
state, remain true out of equilibrium as well. The same definition also 
shows that it would be inappropriate to try to define temperature without 
introducing at least two subsystems of particles, the molecules of the first 
subsystem being distinguishable from those of the second one for at least 
one (observable) physical property. 

The simplest property which can be used to mark the two subsystems 
is the mass possessed by each molecule of the subsytem. We thus might 
think of considering a mixture of two gases in a state of equilibrium. 
Unfortunately, this is easy for continuous-velocity gases, but poses problems 
for discrete models because of the remark (b) in the discussion following 
Eq. (2.1 b) in Section 2. 

We thus (somehow artificially) accept, in order to avoid a lengthy 
discussion which would lead to the same result, that a discrete velocity in 
equilibrium at rest with a uniform temperature T has a Maxwellian dis- 
tribution (here, as usual in the literature on discrete-velocity gases, and, as 
we already did, using quotes, in the previous section, we call Maxwellian 
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the equilibrium distribution which makes the collision term vanish and 
must be, because we assumed that the H-theorem also holds, an exponential 
of a linear combination of collision invariants). We denote the Maxwellian 
for a gas at rest by 

o/r A exp(-f lmv~/2)  (3.1) 

where m is the molecular mass of the gas and fl must be a universal function 
of the temperature T; the precise relation between fl and the temperature 
cannot be obtained, however, without introducing the second law of ther- 
modynamics. The latter is expressed by Eqs. (1.1) and (1.2). In other words 
the second law defines T uniquely (except for a constant factor), whereas, 
if we adopt the point of view that temperature is just an index of equilibrium 
between two subsystems and T is such a quantity, then any function of 
T, O(T), is another such quantity. 

The questions are: What does kinetic theory exactly tell us about the 
second law? Can we apply the relations holding in thermodynamics in 
kinetic theory (in particular, to a discrete-velocity gas)? If not, is there a 
thermodynamics for such a system? 

In order to answer these questions, we try to assume that the relations 
(1.1) and (1.2) can be applied and see whether we arrive at sensible results. 
To this end, we must exploit the well-known circumstance that the quan- 
tity corresponding to entropy in kinetic theory is -RH,  where H is the 
Boltzmann functional; here R is a constant, to be later identified with a 
universal constant k (Boltzmann's constant) divided by the molecular 
mass. Then if we let 

H = f ~ log ~/#,. J~. dx ( 3.2 ) 
i 

a candidate to entropy is S =  -H/R.  Thus in a (homogeneous) equilibrium 
state we should have 

S = - R  f ~ log o/~.o/r du (3.3) 
i 

M = f ~ ~'/~ dx (3.4) 
i 

E= (I/2) f ~ c~,#,, dx (3.5) 
i 
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where M is the total mass and J~. a Maxwellian distribution given by 

Jg,. = A exp(--flmc~/2) (3.6) 

In addition, ci = v~ if we assume the gas to be at rest. Thus 

S = RflmE-- RM log A (3.7) 

M = A V y" exp(-flmc~/2) (3.8) 
i 

E =  A V(1/2) ~, c~ exp(-flmc~/2) (3.9) 
i 

In a change which is reversible and hence goes through equilibrium states 
we have, by differentiating Eqs. (3.7) and (3.8) (since the total mass M 
remains constant), 

= RflmE + RflmE-- RMA/A (3.10) 

0 = MA/A + M V / V - m r  (3.11) 

and, as a consequence, by eliminating A, 

'S= RflmE + RMI2/V (3.12) 

By comparing this with Eq. (1.1), we find 

fl = 1/(kT), p = RTM/V= Rpt (3.13) 

where k =  Rm must be a universal constant (because of our assumption 
that /3 is a function of just temperature). This gives not only the desired 
identification of the temperatures but also the state equation for a perfect 
gas. The latter result, is however contradictory because, when put together 
with Eq. (1.3), which always holds, it gives Eq. (2.7). This is of course 
satisfactory for the usual Boltzmann gas with continuous velocities because 

3/(2/3m,=(1/2) Ic~-exp(-/3mcZ/2, dc/ f  exp(-~mc:/2) dc (3.14) 

is an identity, but in the case of a gas with discrete velocities it would imply 

3/(2/3m) = ELM=(1/2) Z c~ exp(-/3mc~/Z)/Z exp(-/3mc~/2) (3.15) 
i l i  
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i.e., for any value of the parameter b 

3/(2b) = 2i c~ exp(-bc~)/~ i exp(-bc~) (3.16) 

which is obviously absurd, unless we go to the limit of infinitely many 
velocities with a continuous distribution. 

One may try to escape from this difficulty by modifying the definition 
of S slightly, e.g., by taking, as permitted, ~ = S -  RflMe in place of & but 
the conclusion is similar. 

4. THE U N U S U A L  T H E R M O D Y N A M I C S  OF 
A DISCRETE-VELOCITY GAS. 

I had a chance of mentioning the difficulties discussed in the previous 
section to M. Ernst via e-mail, and he pointed out to me that he had been 
worrying about this problem since 1989 when he was lecturing in a summer 
school. His lectures notes have since been publishedff I His suggestion is 
that one should not hasten to identify the kinetic and thermodynamic 
pressures. 

But how should one identify thermodynamic pressure in kinetic 
theory? Thermodynamics has to do with conservation of energy (first law) 
and irreversibility (second law). Both aspects are present in kinetic theory. 
If we consider a gas in a rectangular box with a movable wall in a state 
with isotropic stresses (given by the kinetic pressure), the balance equation 
for energy is given by Eq. (1.4). 

Concerning q, one has the basic result first indicated by Darroz+s and 
Guiraud (see ref. 8), which is of paramount importance when discussing 
the H-theorem in the presence of walls and can be stated in the following 
form: 

fv .nf logfdv<~ --fl,,,fv.n Ivl2fdv (x e OK2) (4.1) 

Equality holds if and only if f coincides with d4,,. (the Maxwellian with the 
temperature of the wall) on the boundary 0/2 (unless the scattering kernel 
in the boundary conditions is a delta function). 

We remark that if the gas does not slip upon the wall, the right-hand 
side of Eq. (4.1) equals -q,,/(RT,,.), where q, is the heat flow along the 
normal. If the gas slips on the wall with velocity u, then one must add the 
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power of the stresses p,, �9 u (=p~ jn iu i )  to q,,. In this case, however, the right- 
hand side of Eq. (4.1) still equals -q~," ' I / (RT, . ) ,  where ql, '''~ is the heat flow 
in the solid at the wall. In fact q,, + p , .  u = qt,]"~ because the normal energy 
flow must be continuous through the wall (unless there are energy sources 
concentrated at the surface) and stresses have a vanishing power in the 
solid, since the latter is assumed to be at rest. 

This result, holding in kinetic theory with continuous velocities t2~ is 
trivially extended to the case of discrete velocities. Then the time rate of 
H = - R S  is related to q through 

1:1 <~ - q/RT,, .  (4.2) 

where T,,. is the temperature of the boundary through which the heat is 
supplied, provided that the boundary is at rest. The inequality sign turns 
into an equality when the irreversible processes associated with molecular 
collisions may be neglected; in other words when the deviation of the 
distribution function from a Maxwellian is negligible. Equations (4.2) and 
(1.4) give 

T,,.S>>, E + pI?  (4.3) 

This is to be compared with Eq. (1.2). In fact, if we consider a very slow 
process such that the gas temperature T equals T,,. and the irreversible 
processes in the gas may be neglected (in other words, if the deviation from 
a Maxwellian distribution with temperature T,,. is negligible), then Eq. (3) 
coincides with Eq. (1.2). Thus there seems to be no way out of the dif- 
ficulties. However, as remarked by the author in a previous paper, 181 there 
is a proviso  in the above, i.e., that the boundary does not move. This is 
clearly incompatible with the fact that in the above relations we must allow 
the volume to change. Let us then reexamine the result (4.2) in the light of 
this remark. In the case of a moving boundary, Eq. (4.2) is replaced by 

(4.4) 

where w is the vector appearing in the expression of a Maxwellian 

J6  = A exp[ - ( v i -  w)2/2RT,, .]  (4.5) 

and the integral is extended to the moving part of the boundary; the sub- 
script n denotes the normal component (with the normal oriented from the 
boundary into the gas). In the case of continuous velocities, one easily 
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shows (by a direct calculation or by Galilean invariance) that w = u. This 
is not the case for a discrete-velocity gas. In fact now we easily find 

u = p~t4(pR T) + O( w 2) (4.6) 

The terms of order u2( = O(w-')) can be neglected because we consider an 
extremely slow process. Then Eq. (4.4) becomes 

or, since p, T, p are assumed to be uniform on the boundary, 

t;I<<.--[q+(pRT--p) I?]/RT,,. (4.8) 

since the integral of u,, over the interface is - 1I. Hence assuming a reversible 
process [and ignoring the (by now) inessential subscript in T,,.] 

T,~=q + ( p R T -  p) ("= F. + pRTI2 (4.9) 

In other words the second law is satisfied with the definition of temperature 
arising in statistical mechanics, but the change of entropy in a reversible 
process is not simply related to the heat supplied to the gas! It also 
depends on the rate of change of the volume. Of course this term disap- 
pears when we have a Galilei invariant theory, which is the case for a 
continuous velocity gas. 

5. C O N C L U D I N G  R E M A R K S  

We have discussed the relation between the concepts of temperature 
and entropy and the kinetic theory of gases and we have shown that the 
usual thermodynamic relations are by no means obvious and may be con- 
tradictory in some cases. The model of a discrete-velocity gas has been used 
as an example to illustrate the possible pitfalls. It has also been shown that 
the usual relation between the entropy rate and the heat supplied to a gas 
is not valid (even close to equilibrium) unless the theory is Galilei invariant 
(which is obviously not the case for a discrete-velocity gas) and must be 
replaced by another one that eliminates all the paradoxical aspects of the 
matter. We have also discussed the difficulties of discrete-velocity gases, 
such as the lack of a general extension to mixtures, the impossibility of 
finding a sequence of them that arbitrarily approximates a gas with con- 
tinuously distributed velocities, and the possible lack of some collision 
invariants or (on the contrary) the presence of spurious collision invariants. 
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Of course, at this point one might wish to know more. What is the 
situation with a dense gas, a liquid, or a solid? The problem here is that 
we do not have a kinetic theory as accurate as we have for a rarefied gas. 
Even in the case of hard spheres, the Enskog equation is rather accurate, 
but not exact, because it omits memory effects. Thus we do not have the 
tools to discuss the problem as accurately as we have done for a rarefied 
gas. 
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